If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-18x+4=0
a = 15; b = -18; c = +4;
Δ = b2-4ac
Δ = -182-4·15·4
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{21}}{2*15}=\frac{18-2\sqrt{21}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{21}}{2*15}=\frac{18+2\sqrt{21}}{30} $
| 4x+9x=2×6 | | 32x²-28x-15=0 | | (8x-7)4x=15 | | x-2=15/3 | | x²-20x-4000=0 | | x+(5+7)=17 | | 38.7b=309.6 | | 2-3/4x=x/2-1/2 | | x-2x-4=5x-5+3 | | 10-3x+12=4x-20 | | 2x-5+x=5x+15 | | 4-2x+6=3x-5 | | 2x+6=5x+30 | | 3x+12=4-6x+2 | | 9-12x+1=12-3x-2 | | 2x-4=3x-6+1 | | A=23.14e | | 4z*3=6*2z | | 32x+24=10x-4 | | −t/4=6 | | 8x-3x+4=24 | | 85-4x+6=x+1 | | 3x-15=7+x | | −t4=6 | | X+.0875x+.2x=200 | | x+4/x-5/3=-1/x | | 5t+2=6,t | | x+(27+X)=247 | | 16x-40=21x+7 | | (6/2)*b=1 | | 6/2*b=1 | | (17+x)+X=137 |